Direkt zum Inhalt springen

    Focal Periods

    In the past years, an extremely successful scientific community has been established at TUM-IAS. The work performed within the different Focus Groups has led to high-level publications and events, thus increasing the visibility of the Institute. With interdisciplinarity and sustainability of collaboration as major objectives of the Institute, the TUM-IAS Focal Periods aim at supporting interaction between different Focus Groups, and between active Fellows and alumni Fellows around a certain theme. It is expected that the applicants agree on a joint collaboration and a joint research stay at TUM of at least two weeks during the Focal Period, and on a visible outcome of the joint work. This can be e.g. a conference presenting the results of the collaborative work, a jointly edited book on the research subject, or a major joint research grant proposal.

    Focal Periods 2016/2017

    1. Clinical Cell and Tissue Engineering

    Involved Focus Groups:

    Focus Group Clinical Cell Processing and Purification

    Focus Group Regenerative Medicine

    Project Description:
    With the establishment of the Munich School of Bioengineering, TUM is strengthening its academic activities in an important research area. Clinical cell purification, processing and therapy (CT) as well as Tissue Engineering and Regenerative Medicine (TE&RM) are main pillars in this program, with a strategic direction and focus on translating technology developments into defined clinical applications.
    Due to promising clinical results in first proof-of-concept trials, CT and TE&RM receives growing attention for the development of innovative and highly effective therapies. Adult tissue stem cells (tSCs) with their high regenerative capacity have the great potential to reconstitute defined human tissues. Major bottlenecks from a translational research point of view are isolation, culture and expansion of tSCs and the maintenance of their potency and self-renewal capacity upon in vivo engraftment. This is becoming especially important when further genetic modification (e.g. recombinant expression of targeting receptors, growth factors or cytokines) is combined with adoptive cell therapy. The regeneration of large volume musculoskeletal tissues requires a scaffold and/or biomimetic hydrogels. Therefore, combining tissue-engineering tool boxes with adoptive cell therapy represents a promising approach to enhance efficacy and predictability of cell therapeutics. In addition, convergence of TE&RM and CT into preclinical animal model development can be utilized for the generation of advanced humanized rodent models, which are urgently needed for pre-clinical in vivo exploration of efficacy as well as safety features of newly designed cell products.
    At TUM-IAS, leading experts in the field of CT and TE&RM have been brought together within the focus groups ‘Clinical Cell Processing and Purification’ and ‘Regenerative Medicine’. Although coming from different research directions, both groups recognized substantial synergy between their activities with unique potential to further advance cell-based therapies.

    3rd International Symposium on Adoptive T Cell Therapy (March 17-18, 2016)
    International Symposium: Clinical Cell and Tissue Engineering (September 20, 2016)
    Workshop: Clinical Cell and Tissue Engineering (September 21-22, 2016)

    2. Predictive Macroscopic Behavior from Microscopic Simulators (PROMISe)

    Involved Focus Groups:

    Focus Group Complex Systems Modeling and Computation

    Focus Group Physics with Effective Field Theories

    Focus Group Uncertainty Quantification and Predictive Modeling



    Computations in strongly coupled relativistic quantum field theory on the basis of effective field theories.

    Project Description:
    More information can be found here.

    TUMQCD Collaboration:
    The TUMQCD collaboration involves members from TUM, physics department T30f, BNL, Michigan State University, and Fermilab. Mission of the TUMQCD collaboration is to complement effective field theory methods and lattice techniques to calculate the properties of strongly coupled systems at zero and finite temperature.


    Despite the continuous increase in our computational capabilities, the ultimate goal of predictive simulations remains elusive. The key challenges are: High-dimensionality of uncertainties; Information fusion, e.g., multi-fidelity, multi-scale/physics models, and experiments; Model-form uncertainties induced by limited data and incomplete physics; Cost of information acquisition, i.e., the cost of doing simulations/experiments. The purpose of this minisymposium is to address these roadblocks and achieve groundbreaking advances by promoting synergies between applied mathematics, computational physics, and data sciences. Specific topics include but are not limited to: Data-driven model identification; Learning from high-dimensional data; Task-specific information acquisition policies; Non-linear dimension- reduction for coarse graining. The minisymposium included 3 sessions and 12 talks in total.

    Call 2016

    The current call for the TUM-IAS Focal Periods is now open, with a deadline on November 21, 2016. Please send your proposals to
    Dr. Ana Santos Kühn (santos-kuehn(at)zv.tum.de). Decisions will be mailed by January 31, 2017.

    Please find more detailed information in the PDF.